Biography

王鑫,香港科技大学(广州)信息枢纽人工智能学域副教授,国家高层次青年人才,IEEE Senior Member,CCF量子计算专委执委,目前担任国际权威期刊IEEE Transactions on Information Theory、Quantum、Chip的编委。他之前于百度研究院量子计算研究所任职资深研究员与核心技术骨干,负责量子计算研究和百度量子平台研发。在加入百度前,他作为Hartree Fellow在美国马里兰大学量子信息与计算机科学联合中心从事量子计算研究。他于2018年在悉尼科技大学获得博士学位,获评校长杰出博士论文(全校Top 7),并入选教育部国家优秀自费留学生奖学金。

他的研究兴趣涵盖量子信息论、量子算法、量子人工智能、量子软件、量子体系结构,在Physical Review Letters、PRX Quantum、Nature Computational Science、IEEE Transactions on Information Theory、IEEE JSAC、Communications in Mathematical Physics、npj Quantum Information、Quantum、HPCA、ISCA、NeurIPS、AAAI等物理、计算机、人工智能领域的权威期刊与会议发表80余篇论文。 他在量子计算顶会QIP、TQC、AQIS作口头报告二十余次,受邀在量子计算顶会TQC作主旨报告以及在美国物理学年会APS March Meeting做邀请报告。他在量子计算方向申请和授权了50余项中美专利。他是欧洲研究委员会ERC项目评审专家与教育部国家公派出国留学专家库成员,以及QIP、ISIT、AQIS、QCTiP、QTML、AAAI等国际学术会议的程序委员会委员,并入选AI华人青年学者榜(AI+X)与全球前2%顶尖科学家榜单。

Download my resumé.

Hiring: I am looking for self-motivated students (PhD, MPhil, research assistant, intern) and postdoctoral scholars interested in quantum information, quantum machine learning, and quantum computing. Check out the page of recruitment for details. If you are interested in joining the journey from the fundamentals of quantum information to the frontier of Quantum AI, please feel free to contact!

Update: 团队网站最近已上线

Interests
  • 量子信息
  • 量子计算
  • 量子机器学习
  • 量子纠错与错误缓释
  • 量子软件与体系结构
Education
  • 博士,量子信息与量子计算, 2018

    悉尼科技大学

  • 理学学士(数学学院,吴玉章荣誉学院), 2014

    四川大学

Experience

 
 
 
 
 
副教授
香港科技大学(广州)
Jun 2023 – Present 广州
量子信息与量子人工智能研究。
 
 
 
 
 
资深研究员
Jul 2019 – May 2023 北京
量子人工智能研究,百度量子平台开发。
 
 
 
 
 
Hartree Fellow
Aug 2018 – Jun 2019 马里兰
从事量子纠缠、容错量子计算、量子模拟、量子资源理论方面的研究。

News

  • 2022.05,新工作《Fundamental limitations on optimization in variational quantum algorithms》上线arXiv,给出了变分量子算法优化超越梯度视角的局限性论证。

  • 2022.05,入选AI华人青年学者榜单

  • 2022.05,基于机器学习的量子纠缠探测与量化工作《Detecting and quantifying entanglement on near-term quantum devices》在Nature旗下量子信息专刊npj Quantum Information发表。

  • 2022.04,研究有噪量子态信息可恢复性的工作《Information recoverability of noisy quantum states》被量子计算顶会TQC 2022接收(arXiv version)。

  • 2021.12,基于近期量子设备进行量子数据距离估计的工作《Variational quantum algorithms for trace distance and fidelity estimation》在Quantum Science and Technology发表。

  • 2021.11,研究线性映射物理实现所需资源代价的工作《Physical Implementability of Linear Maps and Its Application in Error Mitigation》在Quantum发表,已在量子噪声缓释方向有应用。

  • 2021.11,基于机器学习的分布式量子信息处理协议框架《Practical distributed quantum information processing with LOCCNet》在Nature旗下量子信息专刊npj Quantum Information发表并在量桨平台作为特色功能开源,欢迎使用!

Recent Publications

Quickly discover relevant content by filtering publications.
(2023). Upper Bounds on the Distillable Randomness of Bipartite Quantum States. arXiv:2212.09073.

PDF Cite

(2023). Bounding the forward classical capacity of bipartite quantum channels. IEEE Transactions on Information Theory.

PDF Cite DOI

(2023). Lower bound the T-count via unitary stabilizer nullity. Physical Review Applied.

PDF Cite

(2023). Optimal Quantum Dataset for Learning a Unitary Transformation. Physical Review Applied.

PDF Cite DOI